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Anomalous Diffusion in a Random Velocity Field 

B. Gaveau 1 and L. S. Schulman 2 
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We construct diffusions in random velocity fields which present anomalous 
superdiffusive behavior. The mean square displacement can be made to have 
any power law t ~ for 1 ~< ~ < 2. Higher moments  and characteristic functions are 
also investigated. 
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1. I N T R O D U C T I O N  

In this note, we extend a model  of anomalous  diffusion in a disordered 
lattice in t roduced in ref. 1 (see also refs. 2 and 3). Let us briefly recall the 
result obta ined  in refs. 1 and 2: we have described a r a n d o m  mot ion  of a 
particle in a d-dimensional  disordered lattice, start ing f rom 0, and we found 
that  the mean  square displacement  at t ime n was given by 

r E/3/2 if d = 2 

~r2(n))~l; logn if d = 3  

if d~>4 

Our  purpose  is to give a cont inuous  version of a more  general model  so 
that  we can obtain  any exponent  l ~< c~ ~< 2 with 

(r2(n)) ~n ~ 

and also to compute  higher momen t s  of the displacement.  It  is in general 
ra ther  difficult to obta in  r igorous analytical  results for mot ions  of particle 
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in a disordered medium, due to the non-Markovian character of such 
motions. Many authors have used a renormalization group analysis, (4 9) 
but this is not a completely rigorous approach. The class of models presented 
below can be rigorously treated. Other rigorous scaling results in the discrete 
case have also been obtained in ref. 10. 

A concrete example of this class of model is the diffusion of a fluid in 
a stratified medium. Each layer of the medium has its own transport 
property inducing a different velocity field of the fluid parallel to the layer. 
Moreover, there is a pure diffusion between layers. (2'3~ 

Another example of this class of model is the diffusive transport of 
particles in a turbulent fluid. In this case one has a statistical distribution 
of a velocity field which drives a passive system of particles. The diffusion 
is enhanced and gives the 4/3 law proposed by Richardson. (11) The 
moments of the scalar field were computed exactly by Kraichnan (12) in the 
case where the velocity field is white noise in time. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

We define the model in a ( d+  1)-dimensional space [R a+l with coor- 
dinates (x, y), where x is the first coordinate and y = (Yl  ..... Ya) are the last 
d coordinates. On the y-space, we define a random field co(y). Let us 
denote by (x(t),  y ( t ) )  the position of the particle at time t: y( t )  is a 
d-dimensional Brownian motion starting from 0 at t = 0 .  The particle 
moves with velocity co(y(t)) in the x direction, so that 

;0 x(0 = co(y(~)) d~ (1) 

We define 

<co(y) > = o 

(coCy) coCy') > = ~o(ly-Y'I)  
(2) 

where ( - - - )  is the average over the stochastic state of the field co and ~0(r) 
is a given function of r. That function expresses the smoothness or self- 
correlation of the flow in the y direction(s). In situations where ~0 is a 
slowly decreasing function, we will see that the diffusion in x acquires 
anomalous properties. 

We shall also denote by E the expectation over the path of the 
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Brownian mot ion  y(t). We want  to compute  the mean  square displacement  
of the particle (x(t), y(t)) at t ime t. The ma in  quant i ty  is thus 

( E(x(t)2) ) = ( E ( fo' OO(y(s) ) ds ;~ co(y(s') ) ds') l 

- -2  ds ds' q~(y) e-lyl2/2(s ~') 
~d [2~(s - 

' e - -  [ y l 2 / 2 s  d 
=2/0 ( t - s )ds f~a~o(y)~  y (3) 

3. A S Y M P T O T I C  B E H A V I O R  O F  ( 3 )  F O R  t ~  oo 

We shall consider two different situations. 

First S i t u a t i o n .  cp is integrable. If d =  l, when s ~  co, e [)q2/2s 
tends to 1, and we obta in  directly 

(E(x(t)2)) 8 1 ( f  ) 3 (2~) m ~p(y) dy t 3/2 (4) 

On  the other  hand, if d =  2, it is easy to obtain  

(E(x( t )2)5~ q~(y) dy t l o g t  (5) 

If  d~> 3, we observe that  when t tends to o% 

t e --]Y]2/2s 1 dy 

lyl d-2  

where aa  denotes  the area of  the unit sphere of Nd and we obtain  

dy 2 (f q)(y) [y~-5) t (6) (E(x(t)2)) aa(d_ 2) 

S e c o n d  S i t u a t i o n .  ~o(]yt)~C/[yl ~ for l y i n g .  Here C is a 
certain cons tant  and ~ is a positive exponent  such that  

0 < ~ < 1  if d = l  
(7) 

0 < ~ < 2  if d~>2 
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We want to study for fl = 0 or 1 the asymptot ic  behavior  of 

Ifl(t) = f] s ~ ds f~ q)(y) e-lyl2/2s 

.f~ .f~ e lYl2/2 (S 1/2 lYl) = ~o(s 1/2 ly l )  
= -~ s n ~/2 ds -~d (2~Z) d/2 [y[~ 

t r e-- 1y12/2 C f ,  
= Jo s/~ ~/2 cls JR d (2rOd/2 lyi~ dy 

dy 

e lyl2/2 1 
S f l - ~ / 2 d s [  ~ K ( x / s [ y l ) d y  (8) 

0~ (27r) lyl = 

where K(r) = r~tp(r) - C and tends to 0 if r tends to infinity. 
Under  the hypothesis (7), the first integral in (8) is finite and has the 

value 

l l + fl -- ~/2 oo e r2/2 

o - -  ra- l -~  dr 1 + fl - 0(2 Cad (2~)d/2 

and the second integral of (8) has the form 

lo S ~ ~/2 a( s ) ds 

where a(s) tends to 0 if s --* oo. F rom these remarks and from formula (3), 
we obtain 

2CtTd ( f o e - r 2 / 2 r d - I  , d r )  t 2 ~/2 (9) 
( E ( x ( t ) 2 ) )  (1 - c~/2)(2 - c(2)(2rc) a/2 

In this case, we see that we can obtain any anomalous  superdiffusive 
behavior  for all possible exponents  between 3/2 and 2 if d = 1, and between 
1 and 2 if d >/ 2. 

4. A N A L Y S I S  OF T H E  H I G H E R  M O M E N T S  

To analyze the higher moments ,  we shall assume that  co(y) is a 
Gaussian random field with correlat ion q) as in (2). We have 

(E(x(t)2N) )= (2N)! f~ dsx f~l ds2." f~2N-~ ds2N 

• ((o)(y(S2N)) CO(y(S2N--1)''" CO(Y(S1)) ))) (10) 



Anomalous Diffusion in a Random Velocity Field 379 

and the average over the Gaussian random field is given by the usual 
formula 

N 

i l  > ---  > i  N k - - 1  

(Jl,..., iN) 
il > j l  ,..., iN > j N  

(11) 

We shall also assume that we are in the second situation, 

C 
~o( ly l )~  ~ 4,=(lyl)  

l y l  = 

with restrictions (8) on the exponents. 
If we replace all the ~p in (11) by the asymptotic forms $~, and define 

sj = taj and y(taj) = x f t  z(aj) with a new Brownian motion z, we obtain 

[(2N)' f~ dazN f:2NdazN_l"'ff2dal 

•  H 0 ~( I z(~ - z(~ ] ) t(x-~/Z)N (12) 
k = l  

The expression in brackets will be computed exactly in the next section and 
in particular will be proven to be finite. Moreover, we shall estimate the 
characteristic function 

F(~, t )= ( E(exp[ ~x(t) ]) ) 

It is very easy to obtain a bound on F(~, t) by a function with a finite 
radius of convergence. We want to obtain a bound by a function with an 
infinite radius of convergence. We shall now assume that the correlation 
function is 

C 
~o(Y)=ly[~, 0 < ~ < 1  if d = l ,  0 < ~ < 2  if d>~2 

We know from (10)-(12) that 

(E(x(t) 2N) = (2N)! c2Nt (2-~/2)N dq2N dq2N- 1"'" d~l 
o 0 

1.J Y ( a i , ) -  Y(aj~)l ~ ' ' "  [Y(aiN--Y(qjN ~ 
(13) 
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where I and J are varying over  the sets of indices 

I =  {il > "-" >iN} 

J =  {Jl"" "JN} with ik > J k  for all h 

I w  J =  (1,..., 2N) 

We want  to compute  precisely this expectation.  
F o r  a fixed p a r t i t i o n / ,  J this is 

f Hdu, fd drr2u...ff2drr~ 1 
[Uil"Jf-Uil 1-~ . . .  +Uj~+II=...Iuiu+ , . .  § ~ 

lu,ll 2 lujN+~l 2 
xexp(  21%-----~-,= l[)'"exp(--2la, N+,--a,NlJ 
x E27z (%-  % _  1 ) " "  (2rc){aSN+ 1 -- ajN)] --d/2 {14) 

One of the indice s Jt is 1: suppose that  Jh = 1 and reorder  the indices j~ by 
increasing order  so that  now Jl = 1 < --. < JN" We rescale 

Hjk + l = l)jk + l(Gjk + l --Gjk) 1/2 

and we denote  

Ks=supw Iw+vl~(2rc) a/2dv (15) 

so that  we finally obta in  a bound  of a term like (14) by 

1 O-2N 1 
gnfo  dO'2Nfo dO'2N_l'''fo2dO'l(ffjN+l_(TjN)a/2...(0.2_O.1)o~/2 (16) 

Call 7 = c~/2. An integral like (14) can be writ ten as 

fs  fO fO /~j33- 1-  2y rlJ3 3y dpj3 dpj3.." 
' ' "  Fj3+I +1 (1 -pj3) ~ 

1 1 J2 1 y 

X /~j2+ 1 1 (1 --pA) ~'''" P21-Y alp2 (1 - - p l )  y 

Let us compare  this integral with the integral with the same je  except 
that  a par t icular  Jt has been changed into j / =  J r -  1 (we assume that  this 
is possible or  that  J r -  ~ < J ~ -  1). This means  that  we would change 

1 ~ J l - -  1 - -  ( l - -  1)7 1 

f vJ'---m- dPj,fo "J'-2-( ' -X)~dPj,  1 0o (1 - p s , )  ~ *'j,- 1 
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into 

1 l r~j l 2--(l  1)7 

;o ;o PJI'-I-#dPJ"'" ( 1 - p j ,  1) 7 

The first integral is 

! 

J l -  1 - ( l -  l )7  

and the second integral is 

F(j 1-  ( l -  1)7 ) F(1 --7)  

F(j, + 1 - 17) 

F(j  1-  1 -- ( l--  1 )y) F(1 - 7) 

( j z -  IV) v ( j t -  Iv) 

These are equal. It is then sufficient to consider an integral like (14) 
for Jl = 1 < J2 = 2 < ...  < JN = N, for which it is equal to 

11 @1 il pl-T dp2 1 pZ-2v l p(uN 12)(1 7) 
Jo (1-----P,)~Jo (1--p2)Tfo (1--p3)ydp3""fo ( 1 - p u  1) 7dpN-1 

l 1 

f l ,,(N-- 2)(1 7 ) + N + l  
X F2N dP2N 

0 

F ( 1  - - 3 0  N - 1  N+217_ 1 

F ( l +  ( N -  1 ) ( l - y ) )  f f l  2 k +  ( N - 2 ) ( 1 - 7 )  

/-(1 _ .y)N 1 F ( ( N - -  2)(1 - -y)  + 2) 

-K(1 + (N-  1)(1-7)) F((N-2)(1-7)+N+ 3) 

The number  of partitions (/, J )  is 

( 2 N -  1)(2N- 3)--- 3.1 =2  NF(1/2+N) 
V(l/2) 

so that finally 

(E(x(t) 2N) ) ~ (2N)! (2C2K~ t 2 =/2)x F(1 - 7 )  N 1 
V(1/2) 

F(1/2 + N) F((N-- 2)(1 - y) + 2) 
x (17) 

V(1 + ( N - -  1)(1 - 7)) F((N-  2)(1 -- 7) + N +  3) 
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Let us now define the generalized hypergeometric function: 

r = ~ xU F(1 /2+N)  F ( N ( 1 - 7 ) + 2 7 )  
U>~O F ( N ( 1 - ? ) + ? ) F ( N ( 2 - 7 ) + 2 ? + I )  

Then we have the upper bound in the sense of majorant function 
theory: 

1 
(E(exp[~x( t )] )}  ~ F(1/2)F(1 - 7 )  q57(2~2C2K~t2 ~F(1--7)) (18) 

where 7 = ~/2. Because ? = c(2 < 1, it is clear that (b~ has an infinite radius 
of convergence, but it is not a classical hypergeometric function. The sign 

means that each Taylor coefficient of the first member is less than the 
corresponding Taylor coefficient of the second member. 

5. E S T I M A T I O N  OF T H E  D I S T R I B U T I O N  OF x(t) 

From (14), one can deduce an asymptotic bound of the rescaled 
distribution of x(t). More precisely, the second member of (17) is bounded 
by 

(E(x(t)2N))<<.(tl-7/Z)2N(Ad..~,c)ZNF((I+7)N--7+�89 (19) 

where Aa,7,c is a constant depending only on d, 7, and C, namely, 

Aa.,,c= [A(1 - 7 ) ]  m 2C(2K~) 1/2 ( 2 - 7 )  -1+'/2 (1 -t-7) 1/2 7/2 

Let us now define the rescaled variable 

y(t) = (t 1 x(t) )2 
- ;/2A d,;,cJ 

Then, using (19), for large y, the distribution probability of y(t) is bounded 
from above by 

Prob(y( t )  s dy) <~ B exp( _yl/~1 + ~)) y-(2y + 1/2~/(1 + ~ dy 

Remark. Proof  that K~ is bounded. We consider 

1 e I v l 2 / 2  1 e - Iv12 /2  

f d" 
1 e - -  r v 1 2 / 2  

I . . . .  t>r IW--Vl (2~) d/2dv 
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The first integral is less that C r  a ~ and can be made < e for r sufficiently 
small. Then in the second integral, the integrand tends to 0 if Iwl ~ or, 
while it is dominated by the integrable function 

1 e Ivl2/2 

r ~ (2~)d/2 

and by the Lebesgue theorem can be made less than e for ]w[ large enough. 
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